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Computer simulations of the phase 
decomposition on Cu-Co binary alloys 
based on the non-linear diffusion equation 

T. MIYAZAKI ,  A. TAKEUCHI,  T. KOYAMA 
Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya, 
Japan 

Computer simulations of phase decomposition were performed for the Cu-Co alloy system on 
the basis of the non-linear diffusion equation. In the calculations, the modified regular 
solution approximation was adopted, i.e. the composition and temperature dependences of the 
interaction parameter, ~, between the nearest neighbour atoms were taken into account and 
the mobility of atoms was defined as a function of solute composition. The phase 
decompositions were successfully computed for the Cu-Co alloys. The calculation method 
proposed here is applicable to many actual alloy systems.. 

1. I n t r o d u c t i o n  
Theoretical investigations of the phase decomposition 
of supersaturated solid solution have been carried out 
by many researchers. Since Cahn and Hilliard [1, 2] 
proposed the non-linear diffusion equation in the 
1960s, many researchers have attempted a theoretical 
analysis of phase decomposition on the basis of this 
equation [2Z7 ]. Cahn [4], assuming the interdiffusion 
coefficient, D, to be independent of composition, de- 
rived the well-known linear theory of spinodal de- 
composition. Cahn's analysis introduced the amplifi- 
cation factor and announced the concept of the pre- 
dominant wave in the spinodal decomposition. This 
proposal has greatly contributed to the basic under- 
standing of spinodal decomposition. However, the 
theory is only valid for the early stage of phase de- 
composition of the alloy, because of the neglect of the 
non-linear term in the diffusion equation. Since then, 
interest has moved to the precise evaluation of the 
non-linear term. Swanger et al. [5], Langer et al. I-6] 
and Tsakalakos [7] analysed the phase decomposi- 
tion process on the basis of such a point of view. 
However, various assumptions and omissions were 
made in their calculations, because it was extremely 
difficult to obtain an analytical solution of the non- 
linear part in the differential equation. 

Tsujimoto [8-11] proposed the Fourier expression 
of the non-linear diffusion equation and devised a 
metho~t by which the phase decomposition was pre- 
cisely analysed. However, the calculation was only 
performed for a single composition peak formed at the 
origin of the coordinate axis. Our group [12; 13], 
having improved this method, succeeded in the com- 
puter simulations of various phase decompositions by 
using a polynomial free energy equation of solute 
composition and showed many interesting simulation 
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results such as competitive growth among the com- 
position peaks [12, 13], a reversion process of zones 
[14] and a spectrum behaviour of X-ray small-angle 
scattering with phase decomposition [14]. This 
method is considered to be very useful in the basic 
understanding of the phase decomposition process. 
Nevertheless, it was still difficult to apply the method 
for the actual alloy system, because the polynomial 
which was unsuitable for expressing the actual free 
energy was adopted in the calculation. Such a situ- 
ation created a serious shortcoming in the practical 
use of this method. 

However, recently we have proposed a new ex- 
pression for the non-linear diffusion equation which 
was based on the regular solution approximation, and 
we have examined the propriety of the new method by 
computer simulation for a hypothetical phase diagram 
whose atomic interaction parameter, f2, was independ- 
ent of composition [15]. This method is applicable for 
the phase decomposition of the actual alloy systems 
which usually have a biasymmetric free energy curve 
with composition caused by the composition and tem- 
perature dependences of the atomic interaction para- 
meter. 

In the present work, taking into account the com- 
position and temperature dependences of the inter- 
action parameter, the computer simulations of phase 
decomposition for the Cu Co binary alloy system 
were undertaken. 

2. Calculat ion method 
As the theoretical background has been presented in 
our previous paper [15], only the general calculation 
method for the Cu Co alloy system is presented. 
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The non-linear diffusion equation of Cahn and Hil- 
liard [1, 2], which expresses one-dimensional diffusion 
behaviour, is given by 

~ G / ~ t  = ~ ( 5 ~ G / ~ x ) / ~ x  

- 28 ( / ~ 3  Cs/Sx  3)/8x (1) 

The second term of the right-hand side of Equation 1 
is an excess term of the chemical free energy, origin- 
ating in the composition gradient. /s is the gradient 
energy coefficient. In order to perform the computer 
simulation of phase decomposition precisely, we must 
know the composition and temperature dependences 
o f / )  a n d / ( .  Therefore, first we show the expressions 
for 15 and /~ for the Cu Co alloy system, and then 
explain the Fourier expression of the non-linear flux 
equation. 

2.1. Interdiffusion coefficient, /~, and the 
gradient energy coefficient, k 

The interdiffusion coefficient,/), and the gradient en- 
ergy coefficient,/(, are defined by Equations 2 and 3 
[15]. 

f i  = M ( C , )  (O2G/~C~) (2) 

= M(Ca)~:(CB, T) (3) 

with K(Ca, T) = Ko {fl(Ca, T) + [~fl(CB, T)/~Ca] 
Ca}, where K o = (ro/31/2)2/2, f)(CB, T) is the inter- 
action parameter  between atoms and r o shows a dis- 
tance between the nearest neighbour atoms. 

The chemical free energy, G, of the Cu Co solid 
solution has been given by Nishizawa et al. [16]. 

G = f)(CB, T)CACs + R T ( C A l n  C A + CBln CB) 

(4) 

f~(CB, T) = Ao(T  ) + A ~ ( T ) ( C  A - Ca) (5) 

where Ao(T) = 49500 - 13.32T, AI (T )  = 3575 
- 0.9688 T, R is the gas constant and Tis the absolute 
temperature. C A and Ca are atomic concentrations of 
A and B atoms, respectively (C A + Ca = 1). 

The mobility, M(Cs) ,  in Equations 2 and 3 is de- 
fined by 

M(Ca) = (MACa + MBCA)CAC a (6) 

where M A and Ms are the mobilities of A and B atoms, 
respectively, which are related to the self diffusion 
coefficient, D*, (i = A, B) by 

D* = M~RT (7) 

In the present calculation, M A and MB were assumed 
to be equal, for the simplification of calculation pro- 
cedure, i.e. 

M(Ca) = MoCACa (M A = M n - Mo) (8) 

By substituting Equations 4, 5 and 8 into Equations 2 
and 3, we obtain expressions for the interdiffusion 
coefficient,/~, and the gradient energy coefficient,/s 
for the C u - C o  alloy system. 

= D o + D ~ q ( x , t )  + D z q ( x , t )  2 + Dsq(x ,Q  3 
(9) 

with 

with 

K 0 = 

K~ = 

q(x , t )  = CB(x,t)  - C o 

O o = _ 2M o [Ao CA C B 

+ 3AI(CA - Cs)CACB] 

+ M o R T  

01 = -- 2Mo{Ao(C A - C B )  

+ 3AI[(CA - CB) 2 

- -  2CA CB] } 

D 2 = 2Mo[A o + 9AI(CA -- Ca) ] 

D 3 = _ 12MoA 1 

Ko + K l q ( x , t )  + K2q(x , t )  2 + K3q(x , t )  3 

(lO) 

Ko{AoCAC B q- AI(C A -  3CB)CACB} 

K0{A0(CA -- Ca) + AI[(CA - 3CB) 

(CA -- C,) -- 4CACB]} 

K 2 - Ko[A o q- A1(5C A - - 7 C , ) ]  

K 3 = 4 ~coA 1 

~o = [(ro/3~)2/z]mo 

q(x, t) in Equation 9 shows a composition fluctuation 
from the average composition of alloy C o at location 
x. The diffusion coefficients Do, D1, O2, D 3 and the 
gradient energy coefficients Ko, K1, K 2 and K 3 of 
Equations 9 and 10 are single-valued functions of 
alloy composition, CB. 

2.2. A Fourier expression of the non-linear 
diffusion equation 

The local deviation of solute composition from the 
average content q(x, t) should be expressed as a Four- 
ier series shown in Equation 11 

q(x , t )  = CB(x,t)  -- C o 
+ ~  

= ~ Qh(t) exp( ih~x)  (11) 
h = - cto 

where Qh(t) is an amplitude of a Fourier wave having 
the wave number h (h = _+ 1, _+ 2 . . . . .  h r 0) at time 
t, and [~ is the reciprocal of length of the region 
considered, L, defined by [3 = 2~/L. 

Substituting Equations 9, 10 and 11 for Equation 1 
and rearranging Equation 1 we finally obtain a time 
dependence of Q(h) [15] 

8Q(h)/~t = -(hJS)2[(Do + 2h2~2Ko)Qh] 

-- (h[~) 2 [(1/2)D 1 01(h) + (1/3)D2~2(h) 
+ (1/4)Ds*3(h)] 

- 2h~4[Kl~1(h)  + K2~2(h) 

+ Ks~3(h)  (12) 

,,(h) = f Q(k)O(h- k)dk 

with 
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Where qb 1 (h), q~2(h) and qb3(h ) a r e  the first, second and 
third convolutions of Q(h), showing rates of synthesiz- 
ing new waves. Ol(h), ~2(h) and ~3(h) show the first, 
second and third convolutions of Q(h) and h3Q(h). 
On the basis of Equation 12, we are able to calculate 
the time evolution of the Fourier components Q(h) by 
repeating Equation 13 

Q(h),+a, = Q(h), + [OQ(h)/Ot]tAt (13) 

3. Calculation condit ions 
Fig. 1 shows the equilibrium phase diagram of Cu-Co 
alloy system calculated from Q shown in Equations 4 
and 5. The computer simulations were practiced for 
two alloys whose compositions are 50% and 20% Co 
at 1173 K, indicated by two solid circles in the figure. 

The diffusion coefficients D o, D~, D 2 and D 3 i n / )  at 
1173 K are shown in Fig. 2, and were evaluated in 
accordance with Equation 9. The alloy compositions 
where Do is zero coincide precisely with spinodal 
c o m p o s i t i o n  C s p  1 and C s p  2 a t  1173 K of Fig. 1. The 
uphill diffusion caused by the D o term is expected to 
occur inside the spinodal composition, while the 
downhill diffusion ought to occur outside the com- 
position. 

Fig. 3 represents the composition dependences of 
Ko, K~, K z and K 3 for the Cu-Co system at 1173 K, 
which were calculated from Equation 10. It should be 
noted that the composition dependences of each 
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Figure 1 An equilibrium phase diagram of the Cu-Co  alloy 
proposed by Hasebe and Nishizawa 1-16]: (@) at 1173 K show the 
chemical compositions for the computer simulations. 
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K term are just in inverse relation with that of the 
D terms shown in Fig. 2. These are considered to 
reflect that the interdiffusion coefficient,/~, contributes 
to promote the phase decomposition, while the gra- 
dient energy coefficient, K, is concerned with the re- 
straint force of phase decomposition. The phase de- 
composition seems to progress on the balance of the 
two forces. 

The extent of the wave number, h, during the calcu- 
lation is restricted within +512 for convenience of 
computation. The wavelength of the shortest wave 
(h = _+ 512) is about 0.24 nm, which is less than the 
lattice constant of the typical alloys. The amplitude of 
the initial Fourier components and their signs are 
given at random. 

Numerical values used for the calculation are sum- 
marized in Table I. 
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Figure 2 Changes in diffusion coefficients Do, D1, D z and D s with 
the average solute composition Co at 1173 K shown in Fig. 1. C~pa 
and Csp z show the spinodal compositions at 1173 K. 
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Figure 3 Changes in gradient energy coefficients Ko, K1, K z and 
K 3 with the average solute composition C o. 



T A B L E  I The numerical values used for calculation 

Temperature, T( K ) 
Average composition, C O 
Binodal compositions, C~q~ C~2 
Spinodal compositions, C~p~, C~2 
Mobility of atoms, Mo(m4.J- Ls ~) 
Reciprocal of calculation region, !3 (m- t ) 
Interatomic distance, ro(m ) 

1173 
0.2, 0.5 
0.03, 0.95 
0.15, 0.79 
4.14 x l0 z~ 
5.03 x 107 
2.56 x 10 -~~ 
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Figure 4 Time development of the composition profiles with 
progress of ageing at 1173 K for the alloy of symmetric composition 
(C O = 0.5). (a) 0 ms, (b) 5.72 ms, (c) I4.3 ms, (d) 28.6 ms, (e) 57.2 ms. 

4.  R e s u l t s  a n d  d i s c u s s i o n  
Fig. 4 shows a time evolution of the phase decomposi- 
tion with ageing time for the case of symmetric com- 
position Co = 0.5. It is clearly recognized from the 
figure that the heights of the composition peaks in- 
crease with ageing time but stop increasing at the 
equilibrium composition given by Fig. 1, and then the 
peaks become rectangular. The details of the composi- 
tion profiles are shown later in Fig. 6. 

Fig. 5 shows the calculation results for the asym- 
metric alloy of C o = 0.2. The composition peaks 
decrease in number and the average peak distance 
increases in comparison with that of Fig. 4. The 
heights of some composition peaks increase tempor- 
arily but begin to decrease in the course of decomposi- 
tion such as in the zones marked by the downward 
pointing arrows in the Figure. Such a competitive 
growth between the peaks gives rise to microstructure 
coarsening during phase decomposition. 

Fig. 6a and b show the enlarged composition pro- 
files of Figs 4 and 5, respectively. It is clearly recog- 
nized from the Figure that the heights of the composi- 
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Figure 5 Time development of the composition profiles with 
progress of ageing at 1173 K for the alloy of asymmetric com- 
position (C O = 0.2). (a) 0 ms, (b) 57.2 ms, (c) 143.0 ms, (d) 286.0 ms, 
(e) 572.0 ms. 
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Figure 6 Enlarged composition profiles of the left-hand side region 
(0-8 nm from the left end) in Figs 4e and 5e. (a) 57.2 ms, Co = 0.5, 
(b) 572.0 ms, Co = 0.2. 

tion peaks increase with ageing time but stop increas- 
ing exactly at the equilibrium composition C,q I and 
Coq2, and then the peaks become rectangular. 

In a recent paper [15], we proposed a new ex- 
pression for the non-linear diffusion equation on the 
basis of the regular solution approximation, and prac- 
ticed computer simulations of phase decomposition 
for which we assume the interaction parameter, f~, 
between the nearest neighbour atoms, to be independ- 
ent of composition. In the present, however, we show- 
ed the phase decompositions of the actual alloy sys- 
tem, i.e. of Cu Co alloys, which has an asymmetric 
interaction parameter with composition. The simu- 
lation results performed here obviously show that the 
new calculation method developed by us is useful for 
application to the actual alloy systems. 
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5. Conclusions 
Computer simulations of phase decomposition were 
successfully performed for the Cu-Co alloy system on 
the basis of the new calculation method recently pro- 
posed by us for the non-linear diffusion equation. The 
calculation method is applicable to many alloy sys- 
tems whose interaction parameters change with tem- 
perature and composition. 
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